If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-5t^2+20t+14
We move all terms to the left:
0-(-5t^2+20t+14)=0
We add all the numbers together, and all the variables
-(-5t^2+20t+14)=0
We get rid of parentheses
5t^2-20t-14=0
a = 5; b = -20; c = -14;
Δ = b2-4ac
Δ = -202-4·5·(-14)
Δ = 680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{680}=\sqrt{4*170}=\sqrt{4}*\sqrt{170}=2\sqrt{170}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{170}}{2*5}=\frac{20-2\sqrt{170}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{170}}{2*5}=\frac{20+2\sqrt{170}}{10} $
| 6(2b-5)+3=10 | | f−4/3=3 | | 2x-7=-5x-3 | | 5(x+8)=2x=7+8(x-1) | | 4(z+15)^2-50=590 | | 2x-7=-5-3 | | 3/10y-11=-1 | | 2/3(x+4)=-10 | | 39-x=2x | | 3/a+7=2/10 | | 120-x=x | | 50=x/48 | | -2z+5=3 | | 2z+4=0 | | 125=-25d | | 2z+116=180 | | 2a+64=180 | | 2a+104=180 | | 2p+41=180 | | (x/2-x)+(2/3)=(2/x-2) | | (x/2-2)+(2/3)=(2/x-2) | | .45(x+8)=0.6(x-3) | | 8x+75=x+50+x+3 | | 1.8q-2.q-5.6q=-2.8q-2.9 | | 6x-1/2x=22 | | 2c+118=180 | | 3z/8-8=-3 | | 3g-7/4=8g=12 | | 15x-2(2x-8)=175 | | 4.8p-8=3.8p-8 | | 7.7x+2=6.7× | | 5x-45-10x=35 |